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A restricted Boltzmann machine (RBM) is an unsupervised machine
learning bipartite graphical model that jointly learns a probability dis-
tribution over data and extracts their relevant statistical features. RBMs
were recently proposed for characterizing the patterns of coevolution
between amino acids in protein sequences and for designing new se-
quences. Here, we study how the nature of the features learned by RBM
changes with its defining parameters, such as the dimensionality of the
representations (size of the hidden layer) and the sparsity of the features.
We show that for adequate values of these parameters, RBMs operate in
a so-called compositional phase in which visible configurations sampled
from the RBM are obtained by recombining these features. We then com-
pare the performance of RBM with other standard representation learn-
ing algorithms, including principal or independent component analysis
(PCA, ICA), autoencoders (AE), variational autoencoders (VAE), and their
sparse variants. We show that RBMs, due to the stochastic mapping be-
tween data configurations and representations, better capture the under-
lying interactions in the system and are significantly more robust with
respect to sample size than deterministic methods such as PCA or ICA. In
addition, this stochastic mapping is not prescribed a priori as in VAE, but
learned from data, which allows RBMs to show good performance even
with shallow architectures. All numerical results are illustrated on syn-
thetic lattice protein data that share similar statistical features with real
protein sequences and for which ground-truth interactions are known.

1 Introduction

Many complex, interacting systems have collective behaviors that cannot be
understood based solely on a top-down approach. This is either because the
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underlying microscopic interactions between the constituents of the system
are unknown—as in biological neural networks, where the set of synaptic
connections are unique to each network—or because the complete descrip-
tion is so complicated that analytical or numerical resolution is intractable—
as for proteins, for which physical interactions between amino acids can in
principle be characterized, but accurate simulations of protein structures or
functions are computationally prohibitive. In the past two decades, the in-
creasing availability of large amounts of data collected by high-throughput
experiments such as large-scale functional recordings in neuroscience (EEG,
fluorescence imaging) (Schwarz et al., 2014; Wolf et al., 2015), fast sequenc-
ing technologies (Finn et al., 2015; Kolodziejczyk, Kim, Svensson, Marioni,
& Teichmann, 2015; single RNA seq) or deep mutational scans (Fowler et al.,
2010) has shed new light on these systems.

Given such high-dimensional data, one fundamental task is to establish
a descriptive phenomenology of the system. For instance, given a record-
ing of spontaneous neural activity in a brain region or in the whole brain
(e.g., in larval zebrafish), we would like to identify stereotypes of neural
activity patterns (e.g., activity bursts, synfire chains, cell-assembly activa-
tions) describing the dynamics of the system. This representation is in turn
useful to link the behavior of the animal to its neural state and to under-
stand the network architecture. Similarly, given a multiple sequence align-
ment (MSA) of protein sequences (i.e., a collection of protein sequences
from various genes and organisms that share common evolutionary an-
cestry), we would like to identify amino acid motifs controlling the pro-
tein functionalities and structural features and identify, in turn, subfamilies
of proteins with common functions. Important tools for this purpose are
unsupervised representation-learning algorithms. For instance, principal
component analysis can be used for dimensionality reduction, that is, for
projecting system configurations into a low-dimensional representation,
where similarities between states are better highlighted and the system evo-
lution is tractable. Another important example is clustering, which parti-
tions the observed data into different prototypes. Though these two ap-
proaches are very popular, they are not always appropriate: some data are
intrinsically multidimensional and cannot be reduced to a low-dimensional
or categorical representation. Indeed, configurations can mix multiple,
weakly related features, such that using a single global distance metric
would be too reductive. For instance, neural activity states are character-
ized by the clusters of neurons that are activated, which are themselves re-
lated to a variety of distinct sensory, motor, or cognitive tasks. Similarly,
proteins have a variety of biochemical properties such as binding affinity
and specificity, thermodynamic stability, or allostery, which are controlled
by distinct amino acid motifs within their sequences. In such situations,
other approaches such as independent component analysis or sparse dictio-
naries, which aim at representing the data by a (larger) set of independent
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latent factors, appear to be more appropriate (McKeown et al., 1998; Rivoire,
Reynolds, & Ranganathan, 2016).

A second goal is to infer the set of interactions underlying the system’s
collective behavior. In the case of neural recordings, we would look for func-
tional connections that reflect the structure of the relevant synaptic con-
nections in a given brain state. In the case of proteins, we would like to
know what interactions between amino acids shape the protein structure
and functions. For instance, a Van Der Waals repulsion between two amino
acids is irrelevant if both are far from one another in the tridimensional
structure; the set of relevant interactions is therefore linked to the structure.
One popular approach for inferring interactions from observation statistics
relies on graphical (e.g., Ising or Potts) models. It consists in first defining
a quadratic log-probability function, then inferring the associated statis-
tical fields (site potentials) and pairwise couplings by matching the first-
and second-order moments of data. This can be done efficiently through
various approaches (see Nguyen, Zecchina, & Berg, 2017, and Cocco, Fein-
auer, Figliuzzi, Monasson, & Weigt, 2018) for recent reviews. The inverse
Potts approach, called direct-coupling-analysis (Weigt, White, Szurmant,
Hoch, & Hwa, 2009; Morcos et al., 2011) in the context of protein sequence
analysis, helps predict structural contact maps for a protein family from se-
quence data only. Moreover, such an approach defines a probability distri-
bution that can be used for artificial sample generation and, more broadly,
quantitative modeling—for example, of mutational fitness landscape pre-
diction in proteins (Figliuzzi, Jacquier, Schug, Tenaillon, & Weigt, 2016;
Hopf et al., 2017) or neural state information content (Tkacik, Prentice, Bal-
asubramanian, & Schneidman, 2010) or brain states (Posani, Cocco, Ježek,
& Monasson, 2017). The main drawback of graphical models is that, unlike
representation learning algorithms, they do not provide any direct, inter-
pretable insight over the data distribution. Indeed, the relationship between
the inferred parameters (fields and couplings) and the typical configura-
tions associated with the probability distribution of the model is mathe-
matically well defined but intricate in practice. For instance, it is difficult
to deduce the existence of data clusters or global collective modes from the
knowledge of the fields and couplings.

An interesting alternative for overcoming this issue are restricted Boltz-
mann machines (RBM). An RBM is a graphical model that can learn both a
representation and a distribution of the configuration space, naturally com-
bining both approaches. RBM are bipartite graphical models, constituted by
a visible layer carrying the data configurations and a hidden layer, where
their representation is formed (see Figure 1a). Unlike Boltzmann machines,
there are no couplings within the visible layer or between hidden units.
RBM were introduced in Ackley, Hinton, and Sejnowski (1987) and popu-
larized by Hinton et al. (Hinton, 2002; Hinton, Osindero, & Teh, 2006) for
feature extraction and pretraining of deep networks. More recently, RBMs
were shown to be efficient for modeling coevolution in protein sequences
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Figure 1: (a) A restricted Boltzmann machine (RBM) is a two-layer bipartite network: a visible layer (units vi) carrying the data and
a hidden layer (units hμ) where the data are represented. The dimensions of the data and representation spaces are, respectively,
N and M. Visible and hidden units are subject to local potentials denoted by, respectively, gi and Uμ. Here, we consider that visible
units vi take discrete values (such as amino acids shown in the visible units’ blue circles), while hidden units hμ may take either
discrete or real values. (b) The alternate Gibbs sampler for sampling from P(v, h). Sampling consists of alternating between a
stochastic feature extraction from data (i.e., sample from P(h|v)) and a stochastic reconstruction of data from features (i.e., sample
from P(v|h)).
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(Tubiana, Cocco, & Monasson, 2018). The features inferred are sequence mo-
tifs related to the structure, function, and phylogeny of the protein, and
they can be recombined to generate artificial sequences with putative prop-
erties. An important question is to understand the nature and statistics of
the representation inferred by RBMs and how they depend on the choice
of model parameters (nature and number of hidden units, sparse regular-
ization). Indeed, unlike PCA, independent component analysis (ICA), or
sparse dictionaries, no constraints on the statistics or the nature of the rep-
resentations, such as decorrelation or independence, are explicitly enforced
in RBM. To answer this question, we apply here RBM on synthetic align-
ments of lattice protein sequences, for which ground-truth interactions and
fitness functions are available. We analyze and interpret the nature of the
representations learned by RBM as a function of its defining parameters and
in connection with theoretical results on RBMs drawn from random statisti-
cal ensembles obtained with statistical physics tools (Tubiana & Monasson,
2017). We then compare our results to the other feature extraction methods.

The letter is organized as follows. In section 2, we formally define RBM
and present the main steps of the learning procedure. In section 3, we
discuss the different types of representations RBM that can learn, with a
reminder of recent related results on the different operation regimes, in
particular, the so-called compositional phase, theoretically found in ran-
dom RBM ensembles. In section 4, we introduce lattice proteins (LP) and
present the main results of the applications of RBM to LP sequence data.
Section 5 is dedicated to the comparison of RBM with other representa-
tion learning algorithms, including principal component analysis (PCA),
independent component analysis (ICA), sparse principal component analy-
sis (sPCA), sparse dictionaries, sparse autoencoders (sAE), and sparse vari-
ational autoencoders (sVAE).

2 Restricted Boltzmann Machines

2.1 Definition. A restricted Boltzmann machine (RBM) is a joint prob-
ability distribution over two sets of random variables: the visible layer
v = (v1, .., vi, . . . , vN ) and hidden layer h = (h1, .., hμ, . . . , hM). It is formally
defined on a bipartite, two-layer graph (see Figure 1a). Depending on the
nature of data considered, the visible units vi can be continuous or categor-
ical, taking q values. Here, we use notations for protein sequence analysis
in which each visible unit represents a site of the multiple sequence align-
ment and takes q = 21 values (20 amino acids + 1 alignment gap). The hid-
den units hμ represent latent factors that can be either continuous or binary.
Their joint probability distribution is

P(v, h) = 1
Z

exp
( N∑

i=1

gi(vi) −
M∑

μ=1

Uμ(hμ) +
∑
i,μ

hμ wiμ(vi)

︸ ︷︷ ︸
−E(v,h)

)
, (2.1)
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where the fields gi(v ) and potentials Uμ control the conditional probabilities
of the vi, hμ and the weights wiμ(v ) couple the visible and hidden variables.
The partition function Z = ∑

v

∫
dhe−E(v,h) is defined such that P is normal-

ized to unity. Some choices for the hidden-unit potentials are:

• The Bernoulli potential:
U (0) = 0, U (1) = u1, and U (h) = +∞ if h �= 0, 1.

• The quadratic potential,

U (h) = 1
2
γ h2 + θ h, (2.2)

with h real-valued.
• Rectified linear unit (ReLU) potential U (h) = 1

2γ h2 + θ h, with h real-
valued and positive, and U (h) = +∞ for negative h.

• The double rectified linear unit (dReLU) potential,

U (h) = 1
2
γ +(h+)2 + 1

2
γ −(h−)2 + θ+ h+ + θ−h−, (2.3)

where h+ = max(h, 0), h− = min(h, 0) and h is real-valued.

Bernoulli and quadratic potentials are standard choices in the literature.
RBM with ReLU-like average activity were originally proposed in Nair and
Hinton (2010), and the above potential, which can be sampled from ex-
actly, was introduced in Tubiana and Monasson (2017). The so-called double
ReLU potential, introduced in Tubiana et al. (2018), is a more general form,
with an associated distribution that can be asymmetric and interpolate be-
tween bimodal, gaussian, or Laplace-like sparse distributions depending
on the choice of the parameters (see Figure 2a).

Although we do not discuss them here, several extensions to the original
RBM energy form were also proposed, such as covariance RBM (Dahl, Ran-
zato, Mohamed, & Hinton, 2010), spike-and-slab RBM (Courville, Bergstra,
& Bengio, 2011), and batch-normalized RBM/DBM (Vu, Nguyen, Le, Luo,
& Phung, 2018).

2.2 Sampling. Standard sampling from distribution 2.1 is achieved by
the alternate Gibbs sampling Monte Carlo algorithm, which exploits the
bipartite nature of the interaction graph (see Figure 1b). Given a visible layer
configuration v, the hidden unit μ receives the input

Iμ(v) =
∑

i

wiμ(vi), (2.4)

and the conditional probability of the hidden-unit configuration is given by
P(h|v) = ∏

μ P(hμ|v), where

P(hμ|v) ∝ exp
( − Uμ(hμ) + hμ Iμ(v)

)
. (2.5)
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Similarly, given a hidden layer configuration h, one can sample from the
conditional probability distribution P(v|h) = ∏

i P(vi|h), where P(vi|h) is a
categorical distribution,

P(vi|h) ∝ exp
(
gi(vi) + Ivi (h)

)
, (2.6)

with Ivi (h) = ∑
μ hμ wiμ(v ). Alternate sampling from P(h|v) and P(v|h) de-

fines a Markov chain that eventually converges toward the equilibrium dis-
tribution. The potentialUμ determines how the average conditional hidden-
unit activity 〈hμ〉(I) and the transfer function Hμ(I) = arg max P(hμ|I) vary
with the input I = Iμ(v) (see Figure 2). For quadratic potential, both are
linear functions of the input I, whereas for the ReLU potential, we have
Hμ(I) = max

( Iμ−θμ

γμ
, 0

)
. The dReLU potential is the most general form and

can effectively interpolate between quadratic (θ+ = θ−, γ+ = γ−), ReLU
(γ− → ∞), and Bernoulli (γ± = ∓θ± → +∞) potentials.

For θ+ > θ− (the blue curve in Figure 2) small inputs I barely activate the
hidden unit, and the average activity is a soft ReLU, whereas for θ+ < θ−,
the average activity rises abruptly at θ+

√
γ−−θ−

√
γ+√

γ++√
γ−

(the red curve in Figure 2),
similar to a soft thresholding function.

2.3 Marginal Distribution. The marginal distribution over the visible
configurations, P(v), is obtained by integration of the joint distribution
P(v, h) over h, and reads

P(v) =
∫ M∏

μ=1

dhμP(v, h)

= 1
Z

exp
( N∑

i=1

gi(vi) +
M∑

μ=1

�μ

(
Iμ(v)

)
︸ ︷︷ ︸

−Eeff (v)

)
, (2.7)

where �μ(I) = log
[∫

dh e−Uμ(h)+h I
]

is the cumulant generative function, or
log Laplace transform, associated with the potential Uμ (see Figure 2c). By
construction, �′

μ(I) = 〈hμ〉(I) and �′′
μ(I) = 〈h2

μ〉(I) − 〈hμ〉(I)2.
A special case of interest is obtained for the quadratic potential U (h) in

equation 2.2. The joint distribution P(v, h) in equation 2.1 is gaussian in the
hidden-unit values hμ, and the integration can be done straightforwardly to
obtain the marginal distribution over visible configurations, P(v) in equa-
tion 2.7. The outcome is

P(v) = 1
Z

exp

⎛
⎝∑

i

g̃i(vi) + 1
2

∑
i, j

J̃i j(vi, v j )

⎞
⎠ , (2.8)
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with

g̃i(v ) = gi(v ) − θ

γ

∑
μ

wiμ(v ), (2.9)

J̃i j(v, v ′) = 1
γ

∑
μ

wiμ(v )w jμ(v ′). (2.10)

Hence, the RBM is effectively a Hopfield-Potts model with pairwise
interactions between the visible units (Barra, Bernacchia, Santucci, & Con-
tucci, 2012). The number of hidden units sets the maximal rank of the in-
teraction matrix J̃, while the weights vectors attached to the hidden units
play the roles of the patterns of the Hopfield-Potts model. In general, for
nonquadratic potentials, higher-order interactions between visible units are
present. We also note that for quadratic potential, the marginal probability
is invariant under rotation of the weights wiμ(v ) → ∑

μ′ Uμ,μ′wiμ′ (v ); there-
fore, the weights cannot be interpreted separately from each other. In gen-
eral, such invariance is broken for nonquadratic potential.

2.4 Learning Algorithm. Training is achieved by maximizing the aver-
age log likelihood of the data 〈log P(v)〉data (see equation 2.7) by stochastic
gradient descent (SGD). For a generic parameter θ , the gradient of the like-
lihood is given by

∂〈log P(v)〉data

∂θ
= −

〈
∂Eeff(v)

∂θ

〉
data

+
〈
∂Eeff(v)

∂θ

〉
RBM

, (2.11)

where 〈O〉data and 〈O〉RBM indicate, respectively, the averages over the data
and model distributions of an observable O. Evaluating the model averages
can be done with Monte Carlo simulations (Ackley et al., 1987; Tieleman,
2008; Desjardins, Courville, & Bengio, 2010; Desjardins, Courville, Bengio,
Vincent, & Delalleau, 2010; Salakhutdinov, 2010; Cho, Raiko, & Ilin, 2010), or
mean-field-like approximations (Gabrié, Tramel, & Krzakala, 2015; Tramel,
Gabrié, Manoel, Caltagirone, & Krzakala, 2017). The gradients of the log-
likelihood log P(v) with respect to the fields gi(v ), couplings wiμ(v ), and
hidden-unit potential parameters that we write generically as ξμ, therefore
read:

∂ log P
∂gi(v )

= 〈δvi,v 〉data − 〈δvi,v 〉RBM, (2.12)

∂ log P
∂wiμ(v )

= 〈δvi,v �′
μ

(
Iμ(v)

)〉data − 〈δvi,v �′
μ

(
Iμ(v)

)〉RBM, (2.13)
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∂ log P
∂ξμ

=
〈

∂

∂ξμ

�μ

(
Iμ(v)

)〉
data

−
〈

∂

∂ξμ

�μ

(
Iμ(v)

)〉
RBM

, (2.14)

Here, δvi,v = 1 if vi = v , and 0 otherwise denotes the Kronecker function.
When the likelihood is maximal, the model satisfies moment-matching
equations similar to Potts models. In particular, for a quadratic potential,
the average activity �′

μ is linear, and equation 2.13 entails that the differ-
ence between the second-order moments of the data and model distribu-
tions vanishes.

Additionally, there is a formal correspondence between equation 2.13
and other update equations in feature extraction algorithms such as ICA.
For instance, in the FastICA (Hyvärinen & Oja, 2000) formulation, the
weight update is given by �w ∝ 〈δvi,v f

(
Iμ(v)

)〉data, where f is the hidden
unit transfer function, followed by an application of the whitening con-
straint 〈Iμ(v)Iν (v)〉data = δμ,ν . In both cases, the first step, which is identi-
cal for both methods, drives the weights toward nongaussian features (as
long as the transfer function �′ resp. f is nonlinear), whereas the second one
prevents weights from diverging or collapsing onto one another. The gradi-
ent of the partition function, which makes the model generative, effectively
behaves as a regularization of the weights. One notable difference is that
using adaptive dReLU nonlinearities allows us to extract simultaneously
both subgaussian (with negative kurtosis such as bimodal distribution) and
supergaussian features (i.e., with positive kurtosis such as sparse Laplace
distribution), as well as asymmetric ones. In contrast, in FastICA, the choice
of nonlinearity biases learning toward either subgaussian or supergaussian
distributions. In addition, RBM can be regularized to avoid overfitting by
adding to the log-likelihood penalty terms over the fields and the weights.
We use the standard L2 regularization for the fields ∝ ∑

i,v gi(v )2, and an
L1/L2 penalty for the weights

R = λ2
1

2Nq

∑
μ

⎛
⎝∑

i,v

|wiμ(v )|
⎞
⎠2

. (2.15)

The latter choice can be explained by writing its gradient ∝ (∑
i,v |wiμ(v )|)

sign(wiμ(v )): it is similar to the L1 regularization, with a strength increas-
ing with the weights, hence promoting homogeneity among hidden units.
These regularization terms are subtracted from the log-likelihood log P(v)
defined above prior to maximization over the RBM parameters. Some addi-
tional practical details of the training algorithm are provided in appendix
A. For more insights, interested readers are referred to the review by Fis-
cher and Igel (2012) for an introduction, and to Tubiana et al. (2018) for the
evaluation of the performance of the algorithm used in this letter.
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3 Nature of the Representation Learned and Weights

3.1 Nature of Representations and Interpretation of the Weights.
Taken together, the hidden units define a probability distribution over the
visible layer via equation 2.7 that can be used for artificial sample gener-
ation, scoring, or Bayesian reconstruction, as well as a representation that
can be used for supervised learning. However, one fundamental question is
how to interpret the hidden units and their associated weights when taken
individually. Moreover, what does the model tell us about the data studied?

To this end, we recall first that a data point v can be approximately recon-
structed from its representation h via a so-called linear-nonlinear relation-
ship, that is, a linear transformation Ii(v, h) = ∑

μ wiμ(v )hμ of the hidden
layer activity followed by an element-wise (stochastic) nonlinearity P(vi|Ii)
(see the conditional distribution P(vi|h) of equation 2.6). A similar recon-
struction relationship also exists in other feature extraction approaches;
for instance, it is linear and deterministic for PCA/ICA and nonlinear de-
terministic for autoencoders (see section 5). Owing to this relationship,
hidden units may be interpreted as the underlying degrees of freedom con-
trolling the visible configurations. However, such interpretation relies on
the constraints imposed on the distribution of P(h), such as decorrelation,
independence, or sparse activity. In contrast, in RBM, the marginal P(h) is
obtained by integrating over the visible layer (similarly as P(v)) and has no
explicit constraints. Therefore, hidden units may be interpreted differently
depending on the statistics of P(h). We sketch in Figure 3 several possible
scenarios for P(h):

• Prototypical representations (see Figure 3b). For a given visible layer
configuration, about one hidden unit is strongly activated, while the
others are weakly activated or silent; each hidden unit responds to a
localized region of the configuration state. Owing to the reconstruc-
tion relation, the weights attached to the hidden unit are prototypes
of data configuration, similar to the centroids obtained with a clus-
tering algorithm.

• Intricate representations (see Figure 3c). A visible layer configuration
activates weakly many (of order M) hidden units. Each hidden unit
is sensitive to a wide region of the configuration space, and different
configurations correspond to slightly different and correlated levels
of activation of the hidden units. Taken altogether, the hidden units
can be very informative about the data, but the individual weights
do not have a simple interpretation.1

1
One extreme example of such intricate representation is the random gaussian pro-

jection for compressed sensing (Donoho, 2006). Provided that the configuration is sparse
in some known basis, it can be reconstructed from a small set of linear projections onto
random independent and identically distributed (i.i.d.) gaussian weights wiμ. Although
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• Compositional representations (see Figure 3d). A substantial number of
hidden units (large compared to one but small compared to the size of
the hidden layer) are activated by any visible configuration, while the
other units are irrelevant. The same hidden unit can be activated in
many distinct parts of the configuration space, and different config-
urations are obtained through combinatorial choices of the strongly
activated hidden units. Conversely, the weights correspond to con-
stitutive parts that, once combined, produce a typical configuration.
Such compositional representations share similar properties with the
ones obtained with sparse dictionaries (Olshausen & Field, 1996;
Mairal, Bach, Ponce, & Sapiro, 2009).

Compositional representations offer several advantages with respect to
the other types. First, they allow RBM to capture invariances in the un-
derlying distribution from vastly distinct data configurations (contrary to
the prototypical regime). Second, representations are sparse (as in the pro-
totypical regime), which makes it possible to understand the relationship
between weights and configurations (see the above discussion). Third, ac-
tivating hidden units of interest (once their weights have been interpreted)
allows one to generate configurations with desired properties (see Figure
3d). A key question is whether we can force the RBM to generate such com-
positional representations.

3.2 Link between Model Parameters and Nature of the Representa-
tions. As we will show, it turns out that all three behaviors can arise in
RBM. Here, we argue that what determines the nature of the representation
are the global statistical properties of the weights, such as their magnitude
and sparsity, as well as the number of hidden-units and the nature of their
potential. This can be seen from a Taylor expansion of the marginal hidden-
layer distribution P(h) for the generated data. For simplicity, we focus on
the case where M = 2 and the model is purely symmetrical, with vi ∈ ±1,
gi(1) = gi(−1) = 0, wiμ(±1) = ±wiμ, γ +

μ = γ −
μ = 1, θ+

μ = −θ−
μ ≡ θμ. For di-

mensional analysis, we also write p as the fraction of the weights wiμ that are
significantly nonzero, and ∼ W/

√
N their corresponding amplitude. Then

the marginal probability over the hidden layer P(h) is given by

log P(h) = log
∑

v

P(v, h) ≡ L(h) − log Z

L(h) =
∑

μ=1,2

−1
2

h2
μ − θμ|hμ| +

∑
i

log cosh

⎛
⎝ ∑

μ=1,2

wiμhμ

⎞
⎠

such representation carries all information necessary to reconstruct the signal, it is by con-
struction unrelated to the main statistical features of the data.
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=
∑

μ=1,2

−1
2

h2
μ︸ ︷︷ ︸

SI

− θμ|hμ|︸ ︷︷ ︸
SI/SE

+ 1
2

(∑
i

w2
iμ

)
h2

μ︸ ︷︷ ︸
SE

− 1
12

(∑
i

w4
iμ

)
h4

μ︸ ︷︷ ︸
SI

+
(∑

i

wi1wi2

)
h1h2︸ ︷︷ ︸

CE/CI

− 1
2

(∑
i

w2
i1w

2
i2

)
h2

1h2
2︸ ︷︷ ︸

CI

− 1
3

(∑
i

w3
i1wi2

)
h3

1h2 − 1
3

(∑
i

wi1w
3
i2

)
h3

1h2︸ ︷︷ ︸
CE/CI

, (3.1)

where we have discarded higher-order terms. This expansion shows how
hidden units effectively interact with one another via self-excitation (SE),
self-inhibition (SI), cross-excitation (CE), or cross-inhibition (CI) terms.
Some key insights are that:

• Large h values arise via self-excitation, with a coefficient in
∑

i w
2
i,μ ∼

pW2.
• The dReLU threshold acts either as a self-inhibition that can suppress

small activities (θμ > 0) or as self-excitation that enhances them.
• Hidden unit interactions (hence, correlations), arise via their overlaps∑

i wiμwiμ ∼ p2W2.
• The nongaussian nature of the visible units induces an effective in-

hibition term between each pair of hidden units, whose magnitude∑
i w

2
iμw2

iμ′ ∼ p2W4

N essentially depends on the overlap between the
supports of the hidden units. We deduce that the larger the hidden
layer, the stronger this high-order inhibition, and that RBMs with
sparse weights (order p nonzero coefficients) have significantly
weaker overlaps (of order p2), and therefore have much less cross-
inhibition.

Depending on the parameter values, several behaviors can therefore
be observed. Intuitively, the (1) prototype, (2) intricate, and (3) composi-
tional representation correspond to the cases where, (1) respectively, strong
self-excitation and strong cross-inhibition result in a winner-take-all situ-
ation where one hidden unit is strongly activated and inhibits the others;
(2) cross-inhibition dominates, and all hidden units are weakly activated;
and (3) strong self-excitation and weak cross-inhibition (e.g., due to sparse
weights) allow for several hidden units to be simultaneously strongly
activated.
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Though informative, the expansion is valid only for small W/small h,
whereas hidden units may take large values in practice. A more elaborate
mathematical analysis is therefore required and is presented next.

3.3 Statistical Mechanics of Random-Weights RBM. The different rep-
resentational regimes shown in Figure 3 can be observed and characterized
analytically in simple statistical ensembles of RBMs controlled by a few
structural parameters (Tubiana & Monasson, 2017):

• The aspect ratio α = M
N of the RBM

• The threshold θμ = θ of the ReLU potential acting on hidden units
• The local field gi = g acting on visible units
• The sparsity p of the weights wiμ independently and uniformly

drawn at random from the distribution (Agliari, Barra, Galluzzi,
Guerra, & Moauro, 2012):2

wiμ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability 1 − p
2
,

W√
N

with probability
p
2
,

− W√
N

with probability
p
2
.

(3.2)

Depending on the values of these parameters, the RBM may operate, at
low temperature, for W2 p � 1, in one of the three following phases when
the size N becomes very large. In the ferromagnetic phase, one hidden unit,
say, μ = 1, receives a strong input,

I1 =
∑

i

wi1〈vi〉, (3.3)

of the order of
√

N. The other hidden units receive small (on the order of
±1) inputs and can be silenced by an appropriate finite value of the thresh-
old θ . Hidden unit 1 is in the linear regime of its ReLU activation curve and
therefore has value h1 = I1. In turn, each visible unit receives an input on the
order of h1 × wi1 from the strongly activated hidden unit. Due to the nonlin-
earity in the activation curve of ReLU and the presence of the threshold θ ,
most of the other hidden units are silent and do not send noisy inputs to the
visible units. Hence, visible unit configurations {vi} are strongly magnetized

2
Here p is assumed to be finite, such that each hidden unit receives input from a large

number pN of visible units. Alternatively, one could impose finite connectivity c = pN,
that is, p of the order of 1/N (Agliari, Annibale, Barra, Coolen, & Tantari, 2013). We eval-
uated p and pN for a set of 38 RBM trained on various protein families with different
lengths and found that p was more stable (see Figure S8 in).
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along the pattern {wi1}. This phase is the same as the one found in the Hop-
field model at sufficiently small loads α (Amit, Gutfreund, & Sompolinsky,
1985).

In the spin-glass phase, if the aspect ratio α of the machine is too large and
the threshold θ and the visible field g are too small, the RBM enters the spin-
glass phase. All inputs Iμ to the visible units are of the order of ±1. Visible
units are also subject to random inputs Ii of the order of unity, and are hence
magnetized as expected in a spin glass.

The third phase is the compositional phase. At large enough sparsity, that
is, for small enough values of p (see equation 3.2), a number L ∼ �

p of hid-
den units have strong magnetizations on the order of m ∼ p × √

N, the
other units being shut down by choices of the threshold θ ∼ √

p. Notice
that L is large compared to 1 but small compared to the hidden-layer size,
M. The value of � is determined through minimization of the free energy
(Tubiana & Monasson, 2017). The input Ii onto visible units is on the or-
der of m × w × L ∼ p. The mean activity in the visible layer is fixed by the
choice of the visible field g ∼ p. This phase requires low temperatures, that
is, weight-squared amplitudes W2 ∼ 1

p at least. Mathematically speaking,
these scalings are obtained when the limit p → 0 is taken after the thermo-
dynamic limit N, M → ∞ (at fixed ratio α = M/N).

Although RBMs learned from data do not follow the same simplistic
weight statistics and deviations are expected, the general idea that each
RBM learns a decomposition of samples into building blocks was observed
on MNIST (Hinton, 2002; Fischer & Igel, 2012), a celebrated data set of hand-
written digits, and is presented hereafter on in silico protein families.

3.4 Summary. To summarize, RBMs with nonquadratic potential and
sparse weights, as enforced by regularization, learn compositional rep-
resentations of data. In other words, enforcing sparsity in weights re-
sults in enforcing sparsity in activity in a fashion similar to that of sparse
dictionaries. The main advantages of RBM with respect to the latter are
that unlike sparse dictionaries, RBM defines a probability distribution—
therefore allowing sampling, scoring, and Bayesian inference—and the
representation is a simple linear-nonlinear transformation instead of the
outcome of an optimization.

Importantly, we note that the random-RBM ensemble analysis shows
only that sparsity is a sufficient condition for building an energy landscape
with a diversity of gradually related attractors; such a landscape could also
be achieved in other parameter regions—for example, when the weights are
correlated. Therefore, there is no guarantee that training an RBM without
regularization on a compositional data set (e.g., generated by a random-
RBM in the compositional phase) will result in sparse weights and a com-
positional representation.
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Since we can enforce a compositional representation via regularization,
what have we learned about the data? The answer is that enforcing sparsity
does not come at the same cost in likelihood for all data sets. In some cases,
for example, for data constituted by samples clustered around prototypes,
weight sparsity yields a significant misfit with respect to the data. In other
cases, such as lattice proteins, presented below, enforcing sparsity comes at
a very weak cost, suggesting that these data are intrinsically compositional.
More generally, RBM trained with fixed regularization strength on complex
data sets may exhibit heterogeneous behaviors, with hidden units behaving
as compositional and others as prototypes (see some examples in Tubiana
et al., 2018).

4 Results

4.1 Lattice Proteins: Model and Data. Lattice protein (LP) models
were introduced in the 1990s to investigate the properties of proteins
(Shakhnovich & Gutin, 1990), in particular how their structure depend on
their sequence. They were recently used to benchmark graphical models in-
ferred from sequence data (Jacquin, Gilson, Shakhnovich, Cocco, & Monas-
son, 2016). In the version considered here, LP include 27 amino acids and
fold on a 3 × 3 × 3 lattice cube (Shakhnovich & Gutin, 1990). There are
N = 103,406 possible folds (up to global symmetries), that is, self-avoiding
conformations of the 27 amino acid–long chains on the cube.

Each sequence v = (v1, v2, . . . , v27) is assigned the energy

E (v; S) =
∑
i< j

c(S)
i j ε(vi, v j ), (4.1)

when it is folded in structure S. In this equation, c(S) is the contact map of
S. It is a 27 × 27 matrix, whose entries are c(S)

i j = 1 if the pair of sites i j is in

contact in S, that is, if i and j are nearest neighbors on the lattice and c(S)
i j =

0 otherwise. The pairwise energy ε(vi, v j ) represents the physicochemical
interaction between the amino acids vi and v j when they are in contact. Its
value is given by the Miyazawa-Jernigan (MJ) knowledge-based potential
(Miyazawa & Jernigan, 1996).

The probability that the protein sequence v folds in one of the structures,
say, S, is

Pnat (v; S) = e−E (v;S)∑N
S′=1 e−E (v;S′ )

, (4.2)
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where the sum at the denominator runs over all N possible structures, in-
cluding the native fold S. We consider that the sequence v folds in S if
Pnat (v; S) > 0.995.

A collection of 36,000 sequences v that specifically fold in structure SA,
such that Pnat (v; SA) > 0.995, were generated by Monte Carlo simulations
as described in Jacquin et al. (2016). As real MSA, lattice-protein data fea-
ture nonconserved and partly conserved sites, short- and long-range corre-
lations between amino acids on different sites, as well as high-order corre-
lations that arise from competition between folds (Jacquin et al., 2016; see
Figure 4). The correlations reflect the main modalities of amino acid interac-
tions, such as electrostatic attraction/repulsion, hydrophobic attraction, or
cysteine-cysteine disulfide bonds (see Figure 4f). Moreover, as for natural
proteins, LP sequences can be partitioned into subfamilies (see Figure 4g).

4.2 Representations of Lattice Proteins by RBM: Interpretation of
Weights and Generative Power. We now learn RBM from the LP sequence
data, with the training procedure presented in section 2.4. The visible layer
includes N = 27 sites, each carrying Potts variables vi taking 20 possible
values. Here, we show results with M = 100 dReLU hidden units, with a
regularization λ2

1 = 0.025, trained on a fairly large alignment of B = 36,000
sequences. We present in Figure 5 a selection of structural LP features in-
ferred by the model (see Tubiana et al., 2018 for more features). For each
hidden unit μ, we show in panel a the weight logo of wiμ(v ) and in panel b
the distribution of its hidden unit input Iμ, as well as the conditional mean
activity 〈hμ〉(Iμ). Weights have significant values on a limited number of
sites only, which makes their interpretation easier.

As seen from Figure 5a, weight 1 focuses mostly on sites 3 and 26, which
are in contact in the structure (see Figure 4a) and are not very conserved
(see the sequence logo in Figure 4d). Positively charged residues (H,R,K)
have a large, positive (resp. negative) component on site 3 (resp. 26), and
negatively charged residues (E, D) have a large, negative (resp. positive)
components on the same sites. The histogram of the input distribution in
Figure 5b shows three main peaks in the data. Since I1(v ) = ∑

i wi1(vi), the
peaks (1) I1 ∼ 3, (2) I1 ∼ −3, and (3) I1 ∼ 0 correspond to sequences having,
respectively, (1) positively charged amino acids on site 3 and negatively
charged amino acids on site 26, (2) conversely, negatively charged amino
acids on site 3 and positively charged on site 26, and (3) identical charges or
noncharged amino acids. Weight 2 also focuses on sites 3 and 26. Its positive
and negative components correspond respectively to charged (D, E, K, R, H)
or hydrophobic amino acids (I, L, V, A, P, W, F). The bulk in the input distri-
bution around I2 ∼ −2 therefore identifies sequences having hydrophobic
amino acids at both sites, whereas the positive peak corresponds to electro-
static contacts as the ones shown in weight 1. The presence of hidden units
1 and 2 signals an excess of sequences having significantly high |I1| or |I2|
compared to an independent-site model. Indeed, the contribution of hidden
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Figure 4: Main features of lattice protein (LP) sequence alignments. Two examples of structures, SA and SG, are shown in, respec-
tively, panels a and b. (c) A subset of the 36,000 sequences generated by Monte Carlo that fold specifically in SA (pnat > 0.995), that
is, with much lower energy when folded in (a) SA than in other structures, such as (b) SG. Color code for amino acids: red = negative
charge (E, D), blue = positive charge (H, K, R), purple = noncharged polar (hydrophilic) (N, T, S, Q), yellow = aromatic (F, W, Y),
black = aliphatic hydrophobic (I, L, M, V), green = cysteine (C), gray = other, small (A, G, P). (d) Position weight matrix of the MSA:
for each site i with observed amino acid frequency fi(v ), the total height denotes the conservation score, log 20 + ∑

v fi(v ) log fi(v ),
and the height of each letter is proportional to fi(v ). (e) Weight logo of the first principal component, PC1; the heights of letters are
proportional to the corresponding principal component coefficients, wPC1

i (v ). Positive and negative coefficients are, respectively,
above and below the 0 axis. (f) Average covariance between pairs of sites in contact, C(v, v ′) = 1

28

∑
i, j c(S)

i j ( fi j(v, v ′) − fi(v ) f j(v ′)).
(g) Histogram of the projections of sequences along PC1.
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Figure 5: Modeling lattice proteins with RBM. (a) Five weight logos, visualiz-
ing the weights wiμ(v ) attached to five selected hidden units. (b) Distribution
of inputs received by the corresponding hidden units, and conditional mean
activity (full line and left scale).
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unit μ = 1, 2 to the log probability is �(Iμ) ∼ I2
μ, since the conditional mean

〈hμ〉(Iμ) = �′(Iμ) is roughly linear (see Figure 5b). In other words, sequences
folding into SA are more likely to have complementary residues on sites 3
and 26 than what would be predicted from an independent site model (with
the same site frequencies of amino acids).

Interestingly, RBM can extract features involving more than two sites.
Weight 3 is located mainly on sites 5 and 22, with weaker weights on sites
6, 9, and 11. It codes for a cysteine-cysteine disulfide bridge located on the
bottom of the structure and present in about a third of the sequences (I3 ∼ 3).
The weak components and small peaks I3 ∼ 4 also highlight sequences with
a triangle of cysteines 5-11-22 (see SA). We note, however, that this is an
artifact of the MJ-based interactions in lattice proteins (see equation 4.1) as
a real cysteine amino acid may form only one disulfide bridge.

Weight 4 is an extended electrostatic mode. It has strong components on
sites 23, 2, 25, 16, and 18 corresponding to the upper side of the protein
(see Figure 4a). Again, these five sites are contiguous on the structure, and
the weight logo indicates a pattern of alternating charges present in many
sequences (I4 � 0 and I4 � 0).

The collective modes defined by RBM may not be contiguous on the na-
tive fold. Weight 5 codes for an electrostatic triangle 20-1-18 and the elec-
trostatic contact 3-26, which is far away from the former. This indicates that
despite being far away, sites 1 and 26 often have the same charge. The latter
constraint is not due to the native structure SA but impedes folding in the
competing structure, SG, in which sites 1 and 26 are neighbors (see Figure
4b). Such negative design was also reported through analysis with pairwise
models (Jacquin et al., 2016).

4.3 Lattice Protein Sequence Design. The interpretability of the hid-
den units allows us to design new sequences with the right fold. We show
in Figure 6a an example of conditional sampling, where the activity of one
hidden unit (here, h5) is fixed. This allows us to design sequences having
either positive or negative I5, depending on the sign of h5—hence having
given charges on a subset of five residues. In this example, biasing can be
useful—for example, to find sequences with prescribed charge distribution.
More broadly, Tubiana et al. (2018) reported that hidden units can have a
structural or functional role, for example, in terms of loop size, binding
specificity, or allosteric interaction. In principle, conditional sampling al-
lows one to tune these properties at will. In Figure 6b, the sequences gen-
erated have both low sequence similarity to the sequences used in training,
with about 40% sequence difference to the closest sequence in the data, and
high probability Pnat (see equation 4.2) to fold into SA. Interestingly, low
temperature sampling for example, sampling from P′(v) ∝ P(v)2, can pro-
duce sequences with higher Pnat than all the sequences used for training. In
real protein design setups, this could correspond to higher binding affinity
or better compromises between different target functions.
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Figure 6: Sequence generation with RBM. (a) Distribution of hidden unit input
I5, for original sequences (black), RBM-generated sequences (green), and condi-
tional RBM-generated sequences (red, blue). The last are obtained by sampling
while fixing the activity of h5 to one of the two values shown in red in Figure
5b. (b) Scatter plot of the number of mutations to the closest natural sequence
versus probability of folding into SA, for natural (gray) and artificial (colored)
LP sequences. Sequences are generated using regular RBM sampling, condi-
tional RBM sampling, or low temperature sampling (see Tubiana et al., 2018).
The nonlinear scale y = − log(1 − Pnat ) was used; the ellipsis indicates the best-
fitting gaussian.

4.4 Representations of Lattice Proteins by RBM: Effect of Sparse Reg-
ularization. We now repeat the previous experiment with varying regu-
larization strength, as well as for various potentials. To see the effect of the
regularization on the weights, we compute a proxy p for the weight sparsity
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Figure 7: Sparsity-performance trade-off on lattice proteins. Scatter plots of log
likelihood versus weight sparsity for the (a) training and (b) test sets. Each point
corresponds to an RBM trained with a different regularization parameter.

(see the definition in appendix B). We also evaluate the likelihood L of the
model on the train and a held-out test set. To do so, we estimate the parti-
tion function via the annealed importance sampling algorithm (Neal, 2001;
Salakhutdinov & Murray, 2008). We show in Figure 7 the sparsity-likelihood
scatter plot.

Without sparse regularization, the weights are not sparse and the rep-
resentation is intricate. As expected, increasing the regularization strength
results in fewer nonzero weights and lower likelihood on the training set.
Somewhat surprisingly, the test set likelihood decays only mildly for a
while, even though the data set is very large such that no overfitting is ex-
pected. This suggests a large degeneracy of maximum likelihood solutions
that perform equally well on test data; sparse regularization allows us to se-
lect one for which the representation is compositional and the weights can
be easily related to the underlying interactions of the model. Beyond some
point, likelihood decreases abruptly because hidden units cannot encode all
key interactions anymore. Choosing a regularization strength such that the
model lies at the elbow of the curve, as was done for the RBM in Figure 5, is
a principled way to obtain a model that is both accurate and interpretable.

4.5 Representations of Lattice Proteins by RBM: Effects of the Size of
the Hidden Layer. We now study how the value of M affects the represen-
tations of the protein sequences. We repeat the training with dReLU RBM
fixed regularization λ2

1 = 0.025 for M varying between 1 and 400 and show
in Figure 8 one typical weight wμ learned by dReLU RBMs for M vary-
ing between 1 and 400. We observe different behaviors as the value of M
increases.

For very low M, the weight vectors are extended over the whole
visible layer. For M = 1, the unique weight vector captures electrostatic
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features—its entries are strong on charged amino acids, such as K, R (pos-
itive charges) and E, D (negative charges)—and is very similar to the top
component of the correlation matrix of the data (compare the top panel
in Figure 8 and Figure 4f). Additional hidden units (see the panels on
the second line of Figure 8 corresponding to M = 2) capture other collec-
tive modes—here patterns of correlated cysteine-cysteine bridges across the
protein. Hence, RBM can be seen as a nonlinear implementation of PCA. A
thorough comparison with PCA will be presented in section 5.

As M increases, the resolution of representations gets finer and finer:
units focus on smaller and smaller portions of the visible layer (see Figure
8). Nonzero entries are restricted to a few sites, often in contact on the pro-
tein structure (see Figure 4, fold SA). We introduce a proxy p for the sparsity
of the weight based on inverse participation ratios of the entries wiμ(v ) (see
appendix B). The behavior of p as a function of M is shown in Figure 9a. We
observe that p decreases (weights get sparser) until M reaches 50 to 100.

For values of M > 100, the modes of covariation cannot be decomposed
into thinner ones anymore, and p saturates to the minimal value ∼ 2/27,
corresponding to a hidden unit linked to two visible units (see Figure 9a).
Then additional features are essentially duplicates of the previous ones.
This can be seen from the distribution of maximum weight overlaps Omax

μ

shown in Figure 9a (see appendix B for a definition).
In addition, the number L of simultaneously active hidden units per se-

quence grows, undergoing a continuous transition from a ferromagnetic-
like regime (L ∼ 1) to a compositional one (L � 1). Note crucially that L
does not scale linearly with M (see Figures 9a and 9b). If we account for du-
plicated hidden units, L tends to saturate at about 12, a number that arises
from the data distribution rather than from M. In contrast, for an unregular-
ized training with quadratic hidden unit potential, L grows to much larger
values (L ∼ 50) as M increases (see Figure 13). Finally, Figure 9c shows that
the theoretical scaling L ∼ 1

p (Tubiana & Monasson, 2017) is qualitatively
correct.

5 Comparison with other Representation Learning Algorithms

5.1 Models and Definitions. We now compare the results obtained
with standard representation learning approaches. Thanks to popular pack-
ages such as Scikit-learn (Buitinck et al., 2013) or Keras (Chollet, 2015), most
of these approaches are easy to implement in practice.

Principal component analysis (PCA) is arguably the most commonly
used tool for finding the main modes of covariation of data. It is rou-
tinely applied in the context of protein sequence analysis for finding protein
subfamilies, identifying specificity-determining positions (Casari, Sander,
& Valencia, 1995; Rausell, Juan, Pazos, & Valencia, 2010; De Juan, Pa-
zos, & Valencia, 2013), and defining subsets of sites (called sectors) within
proteins that control the various properties of the protein (Halabi, Rivoire,
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Figure 9: (a) Evolution of the distribution of weights sparsity pμ and maximum overlaps Omax
μ as functions of the number M of

hidden units. (b) Evolution of the number of strongly activated hidden units as a function of the number M of hidden units. Solid
lines indicate median, and colored area indicates 33%, 66% (dark) and 10%, 90% quantiles (light). (c) Scatter plot of the number of
strongly activated hidden units against weight sparsity. The vertical bar locates the minimal sparsity value p = 2/27. See the text.
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Figure 10: Directed latent variable model. Latent variables are first drawn inde-
pendently from one another. Then a configuration is sampled from P(v|z). See
section 5.1.

Leibler, & Ranganathan, 2009; McLaughlin, Poelwijk, Raman, Gosal, & Ran-
ganathan, 2012). A major drawback of PCA is that it assumes that the
weights are orthogonal, which is in general not true and often results in
extended modes that cannot be interpreted easily. Independent component
analysis (ICA; Bell & Sejnowski, 1995; Hyvärinen & Oja, 2000) is another
approach that aims at alleviating this issue by incorporating high-order mo-
ments statistics into the model. ICAwas applied for identifying neural areas
from fMRI data (McKeown et al., 1998) and also used for protein sequence
analysis (Rivoire et al., 2016). Another way to break the rotational invari-
ance is to impose sparsity constraints on the weights or the representa-
tion via regularization. Sparse PCA (Zou, Hastie, & Tibshirani, 2006) is one
such popular approach, and was considered in both neuroscience (Baden
et al., 2016) and protein sequence analysis (Quadeer, Morales-Jimenez, &
McKay, 2018). We will also study sparse (in weights) single-layer noisy au-
toencoders, which can be seen as a nonlinear variant of sparse PCA. Sparse
dictionaries (Olshausen & Field, 1996; Mairal et al., 2009) are also consid-
ered. Finally, we will consider variational autoencoders (Kingma & Welling,
2013) with a linear-nonlinear decoder, which can be seen as both regular-
ized autoencoder and a nonlinear generative PCA. VAE were recently con-
sidered for generative purpose in proteins (Sinai, Kelsic, Church, & Novak,
2017; Riesselman, Ingraham, & Marks, 2017; Greener, Moffat, & Jones, 2018),
and their encoder defines a representation of the data.

All the above-mentioned models belong to the same family: the linear-
nonlinear latent variable graphical models (see Figure 10). In this genera-
tive model, latent factors zμ are drawn from an independent distribution
P(z) = ∏

μ Pμ(zμ), and the data are obtained, as in RBM, by a linear trans-
formation followed by an element-wise nonlinear stochastic or determinis-
tic transformation, of the form P(v|z) = ∏

i P(vi|Ivi (z)). Unlike RBM, a single
pass, rather than an extensive back-and-forth process, is sufficient to sample
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configurations. For a general choice of Pμ(zμ) and P(v|z), the inference of
this model by maximum likelihood is intractable because the marginal P(v)
does not have a closed form. The different models correspond to different
hypotheses on Pμ(zμ), P

(
vi|Ivi (z)

)
, and learning principles that simplify the

inference problem (see Table 1).

5.2 Lattice Proteins: Features Inferred. We use each approach to in-
fer features from the MSA lattice proteins. For each model, we use the
same number M = 100 of latent factors. For PCA, ICA, and sparse dic-
tionaries, we used one-hot-encoding for each site (i.e., converted into a
20-dimensional binary vector), and the standard implementation from
Scikit-learn with default parameters. For sparse dictionaries, we adjusted
the penalty such that the number L of simultaneously active latent features
matches the one found in RBM—approximately 10. Sparse PCA and sparse
autoencoders are special cases of autoencoders, respectively, with a mean
square reconstruction error and categorical cross-entropy reconstruction er-
ror, and were implemented in Keras (Chollet, 2015). In both cases, we used
the same weights for encoding and decoding. For the noisy variant, we re-
place 20% of the amino acids with a random one before attempting to re-
construct the original sequence. For variational autoencoders, we used the
same parametric form of P(v|z) as for RBM—a linear transformation fol-
lowed by a categorical distribution. The posterior probability P(z|v) is ap-
proximated by a gaussian encoderN

(
μ(v), σ 2(v)

)
where μ(v) and log σ 2(v)

are computed from v either by linear transformation or by a single hidden
layer neural network. The parameters of both P(v|z) and the encoder are
learned by maximizing the variational lower bound on the likelihood of
the model. The sparse regularization is enforced on the decoding weights of
P(v|z) only. For all models with a sparse weight regularization, we selected
the regularization strength so as to obtain similar median sparsity values p
as with the RBM shown in Figure 5. We show for each method six selected
features in Figure 11 (PCA, sPCA, sNAE, sVAE with linear encoder), and
in Figure 14 (ICA, sparse dictionaries, sVAE with nonlinear encoder). For
PCA, ICA, and sparse dictionaries, we show the most important features in
terms of explained variance. For sPCA, sNAE, and sVAE, we show features
with sparsity pμ close to the median sparsity.

Most of the high-importance features inferred by PCA and ICA are com-
pletely delocalized and encode the main collective modes of the data, sim-
ilar to unregularized RBM. Clearly, there is no simple way to relate these
features to the underlying interactions of the system. Even if sparsity could
help, the main issue is the enforced constraint of decorrelation or indepen-
dence, because it impedes the model from inferring smaller coevolution-
ary modes such as pairs of amino acids in contact. Indeed, lattice proteins
exhibits a hierarchy of correlations, with sites that are tightly correlated
and also weakly correlated to others. For instance, hidden units 4 and 5 of
Figure 5 are strongly but not completely correlated, with a small fraction of
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Table 1: Similarities and Differences between Various Feature Extraction Approaches.

Sparse Noisy Sparse Variational
Algorithm PCA ICA (Infomax) Sparse PCA Autoencoders Dictionaries Autoencoders RBM

Pμ(zμ ) Gaussian Nongaussian / / Sparse Gaussian Nongaussian;
correlated

M ≤ N = N ≶ N ≶ N ≶ N ≶ N ≶ N
P(vi|Ivi ) Deterministic Deterministic Deterministic Deterministic Deterministic Stochastic Stochastic
P(z|v) Deterministic Deterministic Deterministic Stochastic Deterministic Stochastic Stochastic
〈vi〉 (Ivi ) Linear Linear Linear Softmax Linear Softmax Softmax
wiμ(v ) Orthonormal Normalized Sparse Sparse Normalized Sparse Sparse
Learning

method
Max. likelihood

⇔ Min.
reconstruction
error (MSE)

Max.
likelihood

Min.
reconstruction
error (MSE)

Min. Noisy
Reconstruction
Error (CCE)

Min.
reconstruction
error (MSE)

Variational max.
likelihood

Max.
likelihood

Note: MSE = mean square error. CCE: categorical cross-entropy.
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Figure 11: Six weights attached to latent factors for (a) principal component
analysis, (b) sparse principal component analysis, (c) sparse noisy autoen-
coders, and (d) sparse variational autoencoders with linear encoding. Weights
are selected as follows: (a) The first six principal components. (b–d) Selected
nonzero weights with weight sparsity pμ close to the median value. Values
above the components indicate the feature importance, measured by either the
latent factor variance λ (when the weights are normalized) or the weight norm
‖W‖2 (when the variances are normalized).
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Table 2: Number of Sparse Features Extracted by the Various Approaches Lo-
calized on the Structure SA.

Sparse Model Pair Features Triplet Features

RBM 47/49 16/18
sPCA 15/25 3/24
Noisy sAE 20/29 7/19
sVAE (linear encoder) 8/8 5/6
sVAE (nonlinear encoder) 6/6 2/4

sequences having I4 > 0 and I5 < 0 and conversely (see Figure 16a). There-
fore, neither PCA nor ICA can resolve the modes; instead, the first principal
component is roughly the superposition of both modes (see Figure 4e). Fi-
nally, both PCA and ICA also infer a feature that focuses only on site 24 (PC4
and IC4). As seen from the conservation profile (see Figure 4d), this site
is strongly conserved, with two possible amino acids. Since mutations are
uncorrelated from the remainder of the sequence and the associated vari-
ance of the mode is fairly high, both PCA and ICA encode this site. In con-
trast, we never find a hidden unit focusing only on a single site with RBM
because its contribution �μ(Iμ(v )) to P(v ) would be equivalent to a field
term gi(vi). Similar features are found with sparse dictionaries as well (see
Figure 14).

As expected, all the models with sparse weights penalties (sPCA, sNAE,
and sVAE) can infer localized features, provided the regularization is ad-
justed accordingly. However, unlike in RBM, a significant fraction of these
features does not focus on sites in contact. For instance, in sparse PCA,
features 2 and 5 focus respectively on pairs 6-17 and 17-21, and neither
of them is in contact. To be more systematic, we identify for each method
the features focusing on two and three sites (via the criterion

∑
v |wiμ(v )| >

0.5 maxi
∑

v |wiμ(v )|), count them, and compare them to the original struc-
ture. Results are shown in Table 2. For RBM, 49 hidden units focus on two
sites, of which 47 are in contact, and 18 focus on three sites, of which 16
are in contact (e.g., like 8-16-27). For the other methods, both the number
of features and the true positive rate are significantly lower. In sparse PCA,
only 15/25 pairs and 3/24 triplet features are legitimate contacts or triplets
in the structure.

The main reason for this failure is that in sparse PCA (as in PCA), the em-
phasis is put on the complete reconstruction of the sequence from the rep-
resentation because the mapping is assumed to be deterministic rather than
stochastic. The sequence must be compressed entirely in the latent factors,
of smaller size M = 100 < 27 × 20 = 540, and this is achieved by grouping
sites in a fashion that may respect some correlations but not necessarily the
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underlying interactions. Therefore, even changing the reconstruction error
to cross-entropy to properly take into account the categorical nature of the
data does not significantly improve the results. However, we found that cor-
rupting the sequence with noise before attempting to reconstruct it (i.e., in-
troducing a stochastic mapping) indeed slightly improves the performance,
though not to the same level as RBM for quantitative modeling.

The simplifying assumption that P(v|z) is deterministic can be lifted by
adopting a variational approach for learning the model. In the case of gaus-
sian distribution for zμ, we obtain the variational autoencoder model. The
features obtained are quite similar to the ones obtained with RBM, featuring
contacts, triplets (with very few false positives), and some extended modes.
Owing to this stochastic mapping, the representation need not encode indi-
vidual site variability and focuses instead on the collective behavior of the
system.

The major inconvenience of VAE is that we find that only a small number
of latent factors (approximately 20) are effectively connected to the visible
layer. Increasing the number of latent factors or changing the training al-
gorithm (SGD versus ADAM, batch normalization) did not improve this
number. This is likely because the independent gaussian assumption is not
compatible with the linear-nonlinear decoder and sparse weights assump-
tion. Indeed, the posterior distribution of the latent factors (from P(z|v))
shows significant correlations and deviations from gaussianity (see Figures
16b and 16c). The KL regularization term of VAE training therefore en-
courages them to be disconnected. Another consequence of this deviation
from i.i.d. gaussian is that sequences generated with the VAE have signif-
icantly lower fitness and diversity than with RBM (see Figures 17 and 18).
Though deep mappings between the representation and the sequence as in
Riesselman et al. (2017), as well as more elaborate priors, as in Mescheder,
Nowozin, and Geiger (2017) can be considered for quantitative modeling,
the resulting models are significantly less interpretable. In contrast, undi-
rected graphical models such as RBM have a more flexible latent variable
distribution and are therefore more expressive for a fixed linear-nonlinear
architecture.

In summary, the key ingredients for learning RBM-like representations
are sparse weights, stochastic mapping between configurations and repre-
sentations, and flexible latent variable distributions.

5.3 Lattice Proteins: Robustness of Features. Somewhat surprisingly,
we also find that allowing a stochastic mapping between representation and
configurations results in features that are significantly more robust with re-
spect to finite sampling. For all the models and parameters used above, we
repeat the training five times with either the original data set and vary-
ing seed or the shuffled data set, in which each column is shuffled inde-
pendently from the others so as to preserve the first-order moments and to
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Figure 12: Comparison of feature importance distribution for real (blue) and
shuffled (orange) data for (a) unregularized RBM, (b) regularized RBM, (c) PCA,
(d) sparse PCA, (e) sparse noisy autoencoders, and (f) sparse variational autoen-
coders (with linear encoding).

suppress correlations. Since the data size is very large, the models trained
on the shuffled data should have latent factors that are either disconnected
or localized on a single site, with small feature importance. We show in
Figures 12 and 19 the distribution of feature importance for the original
and shuffled data for each method. For PCA, ICA, sparse PCA, and sparse
autoencoders, the weights are normalized, and feature importance is de-
termined by the variance of the corresponding latent factor. For RBM and
VAE, the variance of the latent factors is normalized to 1, and the impor-
tance is determined by the norm of the weight vector. In PCA and ICA, we
find that only a handful of features emerge from the bulk; sparse regular-
ization slightly improves the number but not by much. In contrast, there is a
clean scale separation between feature importance for regular and shuffled
data, for both regularized and unregularized RBM and VAE. This notably
explains why only a few principal components can be used for protein se-
quence modeling, whereas many features can be extracted with RBM. The
number of modules that can be distinguished within protein sequences is
therefore grossly underestimated by principal component analysis.
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6 Conclusion

Understanding the collective behavior of a physical system from observa-
tions requires learning a phenomenology of data, as well as inferring the
main interactions that drive its collective behavior. Representation learning
approaches, such as principal component analysis or independent compo-
nent analysis, have been frequently considered for this purpose. Compar-
atively, restricted Boltzmann machines, a machine learning tool originally
popularized for unsupervised pretraining of deep neural networks, have
received little attention, notably due to a limited understanding of the prop-
erties of the learned representations.

In this work, we have studied in detail the performances of RBM on a no-
toriously difficult problem: the prediction of the properties of proteins from
their sequence (the so-called genotype-to-phenotype relationship). We have
shown that provided that appropriate nonquadratic potentials, as well as
sparsity regularization over the weights are used, RBM can learn composi-
tional representations of data, in which the hidden units code for constitu-
tive parts of the data configurations. Each constitutive part, due to sparsity,
focuses on a small region of the data configurations (subset of visible sites)
and is therefore easier to interpret than extended features. In turn, constitu-
tive parts may be stochastically recombined to generate new data with good
properties (here, probability of folding into the desired 3D structure). Reg-
ularized RBM therefore offers an appealing compromise between model
interpretability and generative performance.

We stress that the behavior of RBM described in this letter is in full agree-
ment with theoretical studies of RBM with weights drawn from random
statistical ensembles, controlled by a few parameters, including the spar-
sity, the aspect ratio of the machine, and the thresholds of rectified linear
units (Tubiana & Monasson, 2017). It is, however, a nontrivial result, due
to the very nature of the lattice-protein sequence distribution, that forcing
RBM trained on such data to operate in the compositional regime can be
done at essentially no cost in log likelihood (see Figure 7b). This property
also holds for real proteins, as shown in Tubiana et al. (2018).

In addition, RBM enjoys some useful properties with respect to the other
representation learning approaches studied in this letter. First, RBM repre-
sentations focus on the underlying interactions between components rather
than on all the variability of the data, taken into account by site-dependent
potentials acting on the visible unit. The inferred weights are therefore fully
informative on the key interactions within the system. Second, the distri-
bution of latent factors (see Figure 10) is not imposed in RBM, contrary
to VAE, where it is arbitrarily supposed to be gaussian. The inference of
the hidden-unit potential parameters (thresholds θ± and curvatures γ± for
dReLU units) confers a lot of adaptibility to RBM to fit the data distribution
as closely as possible.
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Altogether, beyond the protein sequence analysis application presented
here, our work suggests that RBMs shed a different light on data and
could be useful to model other data in an accurate and interpretable way.
While we have focused on single-layer representations of data, a major chal-
lenge is to understand how we could leverage our results to learn inter-
pretable multilayer representations of data. Indeed, many data sets, such
as databases of images of objects, exhibit hierarchies of features, entailing
that the low-level features extracted themselves have complex patterns of
covariation. Though it is not clear whether such hierarchy exists in pro-
tein sequences, it is likely to exist in other biological data, such as in large-
scale recordings of biological neural networks. In that case, an RBM may
not be the optimal choice because the correlations between hidden units
are not explicitly fitted from the data, as the RBM model is trained to re-
produce the moments 〈v〉data, 〈 f (h)〉data, and 〈vh〉data only. Instead, correla-
tions between hidden units arise only through the overlaps between their
attached weights (see equation 3.1). Therefore, if two nonoverlapping hid-
den units are correlated in the data, the only way to account for this prop-
erty is to introduce an additional hidden unit, whose weight overlaps with
both. In such a situation, introducing additional couplings between hidden
units or additional layers of hidden units, such as in deep Boltzmann ma-
chines or deep belief networks, would result in more parameter-efficient
and easier-to-interpret models. However, deep architectures raise numer-
ous additional questions. Besides training, which is more challenging, it is
not clear how to interpret and visualize the hidden-unit receptive fields,
which are not linear-nonlinear anymore; how to optimally choose the po-
tentials, architecture, and regularization as functions of the data considered;
whether and when compositional representations can arise in some layer;
how they interact with other types of layers, such as convolutional or pool-
ing layers; and how the nature of representations varies from layer to layer
depending on the structural parameters of the model. Another open issue
is sampling. RBMs, when driven in the compositional phase, empirically
show efficient mixing properties. Characterizing how fast the data distri-
bution is dynamically sampled would be very interesting, with potential
payoff for training where benefiting from efficient sampling is crucial.

Appendix A: Additional Details for the Learning Algorithm

Here we provide additional details for the learning algorithm of
RBMs. Codes for training RBM, as well as the lattice protein multi-
ple sequence alignment, are available at https://github.com/jertubiana
/ProteinMotifRBM.

A.1 Gauge Choice. Since the conditional probability, equation 2.6, is
normalized, the transformations gi(v ) → gi(v ) + λi and wiμ(v ) → wiμ(v ) +
Kiμ leave the conditional probability invariant. We choose the zero-sum

https://github.com/jertubiana/ProteinMotifRBM
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gauges, defined by
∑

v gi(v ) = 0,
∑

v wiμ(v ) = 0. Since the regularization
penalties over the fields and weight depend on the gauge choice, the
gauge must be enforced throughout all training, not only at the end. The
updates on the fields leave the gauge invariant, so the transformation
gi(v ) → gi(v ) − 1

q

∑
v ′ gi(v ′) can be used only once, after initialization. It is

not the case for the updates on the weights, so the transformation wiμ(v ) −
1
q

∑
v ′ wiμ(v ′) must be applied after each gradient update.

A.2 Dynamic Reparameterization. For quadratic and dReLU poten-
tials, there is a redundancy between the slope of the hidden unit average
activity and the global amplitude of the weight vector. Indeed, for the gaus-
sian potential, the model distribution is invariant under rescaling transfor-
mations γμ → λ2γμ, wiμ → λwiμ, θμ → λθμ and offset transformation θμ →
θμ + Kμ, gi → gi − ∑

μ wiμ
Kμ

γμ
. Though we can set γμ = 1, θμ = 0 ∀μ with-

out loss of generality, it can lead to either numerical instability (at a high
learning rate) or slow learning (at a low learning rate). A significantly bet-
ter choice is to dynamically adjust the slope and offset so that 〈hμ〉data ∼ 0
and Var(hμ) ∼ 1 at all times. This new approach, reminiscent of batch nor-
malization for deep networks, is implemented in the training algorithm re-
leased with this work and is benchmarked in Tubiana, Cocco, and Monas-
son (2019).

A.3 Initialization and Stochastic Gradient Descent. The optimization
is carried out by stochastic gradient descent. At each step, the gradient is
evaluated using a mini-batch of the data, as well as a small number of
Markov chain Monte Carlo configurations. We used the same batch size
(= 100) for both sets. The model is initialized as follows:

1. The fields gi(v ) are initialized with the ones of the optimal inde-
pendent model, gi(v ) = log〈δvi,v 〉data, where δ denotes the Kronecker
function. This allows starting from a distribution that is already close
to the data distribution and significantly speeds up the learning.

2. The parameters of the dReLU potential are initialized to γ+ = γ− = 1,
θ+ = θ− = 0. This way, the average activity is initially linear, with a
slope of 1. This choice is the most neutral one, as it does not favor any
kind of nonlinearity (symmetric, asymmetric, sigmoid-like, or ReLU
like).

3. The initial weights are drawn from a gaussian ensemble with vari-
ance σ 2/N, such that the hidden unit inputs Iμ have initially zero
mean and variance σ 2. Indeed, under the above initialization for the
fields and dReLU potential, the initial gradient for W is ∇WLt=0 =
W � Cdata, where Cdata is the data covariance matrix (of size N × 20 ×
N × 20) and � denotes the tensor product over the first two axes
Decelle, Fissore, & Furtlehner (2017). Therefore, using zero weights
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leads to a saddle point of the optimization; very small weights result
in a small gradient and slow initial learning; and very large weights
(σ > 1 result in a spin-glass phase in which samples mix poorly,
which can result in divergence. We found that setting σ = 0.1 yields
a good compromise between a fast initial learning speed and a fast
mixing rate. Using orthogonal ensembles of weights instead of gaus-
sian ones such as in Pennington, Schoenholz, and Ganguli (2017) was
also briefly experimented but did not yield any significant speed-up
for the lattice proteins data set.

The learning rate is initially set to 0.1 and decays exponentially after a
fraction of the total training time (e.g., 50%) until it reaches a final, small
value (e.g., 10−4).

A.4 Explicit Expressions for Training and Sampling from RBM. Train-
ing, sampling, and computing the probability of sequences with RBM
requires (1) sampling from P(v|h), (2) sampling from P(h|v), and (3) evalu-
ating the effective energy Eeff(v) and its derivatives. This is done as follows:

1. Each sequence site i is encoded as a categorical variable taking in-
teger values vi ∈ [0, 20], with each integer corresponding to one of
the 20 amino acids. Similarly, the fields and weights are encoded as,
respectively, an N × 20 matrix and an M × N × 20 tensor.

2. Given a hidden layer configuration, each visible unit is sampled from
a categorical distribution with 20 states.

3. Given a visible layer distribution, each hidden unit is sampled
from P(hμ|v). For a quadratic potential, this conditional distribu-
tion is gaussian. For the dReLU potential, let �(x) = exp( x2

2 )
[
1 −

erf( x√
2

)
]√

π
2 . � satisfies the following properties:

• �(x) ∼x→−∞ exp( x2

2 )
√

2π

• �(x) ∼x→∞ 1
x − 1

x3 + 3
x5 + O( 1

x7 )
• �′(x) = x�(x) − 1

To avoid numerical issues, � is computed in practice with its defini-
tion for x < 5 and with its asymptotic expansion otherwise. We also
write T N (μ, σ 2, a, b)—the truncated gaussian distribution of mode
μ, width σ , and support [a, b]. Then, P(h|I) is given by a mixture of
two truncated gaussians:

P(h|I) = p+T N
(

I − θ+

γ+
,

1
γ+

, 0,+∞
)

+ p−T N
(

μ = I − θ−

γ − , σ 2 = 1
γ − ,−∞, 0

)
, (A.1)

where Z± = �

(
∓(I−θ± )√

γ ±

)
1√
γ ± , and p± = Z±

Z++Z− .
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4. Evaluating Eeff and its derivatives requires an explicit expression
for the cumulant-generating function �(I). For quadratic potentials,
�(I) is given in main text. For dReLU potentials, �(I) = log(Z+ + Z−)
where Z± are defined above.

Appendix B: Proxies for Weight Sparsity, Number of Strongly
Activated Hidden Units

Since neither the hidden layer activity nor the weights are exactly zero,
proxies are required for evaluating them. In order to avoid the use of ar-
bitrary thresholds, which may not be adapted to every case, we use partic-
ipation ratios.

The participation ratio (PRe) of a vector x = {xi} is

PRe(x) = (
∑

i |xi|e)2∑
i |xi|2e

. (B.1)

If x has K nonzero and equal (in modulus) components, PR is equal to K for
any a. In practice, we use the values a = 2 and 3: the higher a is, the more
small components are discounted against strong components in x. Note also
that it is invariant to rescaling of x.

PR can be used to estimate the weight sparsity for a given hidden unit
and averaged to get a single value for a RBM:

wS
iμ ≡

√∑
a

wiμ(a)2,

pμ = 1
N

PR2(wS
μ),

p = 1
M

∑
μ

pμ. (B.2)

Similarly, the number of strongly activated hidden units for a given visi-
ble layer configuration can be computed with a participation ratio. For non-
negative hidden units such as with the ReLU potential, it is obtained via

hμ = 〈
hμ|Iμ(v)

〉
,

L = PR3(hμ). (B.3)

For dReLU hidden units, which can take both positive and negative
values and may have, for example, bimodal activity, their most frequent
activity can be nonzero. We therefore subtract it before computing the
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participation ratio:

hμ = 〈
hμ|Iμ(v)

〉
,

h0
μ = arg max Pdata(hμ),

L = PR3(|hμ − h0
μ|). (B.4)

To measure the overlap between hidden units μ,μ′, we introduce the
quantities

Oμν =
∑

i,v wiμ(v )wiν (v )√(∑
i,v wiμ(v )2

) (∑
i,v wiν (v )2

) , (B.5)

which take values in the [−1, 1] range. We also define Omax
μ = maxμ′ �=μ

|Oμ,μ′ |.
To account for strongly overlapping hidden units, one can also compute

the following weighted participation ratio:

PRe(h, w) = (
∑

μ wμ|hμ|e)2∑
μ wμ|hμ|2e

, (B.6)

where wμ is chosen as the inverse of the number of neighboring hidden
units, defined according to the criterion |Oμν | > 0.9. This way, two hidden
units with identical weights contribute to the participation ratio as much as
a single isolated one does.

Appendix C: Supplementary Figures

Figure 13: Evolution of the weight sparsity p as a function of the number of
hidden units for quadratic potential and no regularization. Unlike in the com-
positional phase, the number of activated hidden units scales as M.
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Figure 14: Six weights attached to latent factors for (a) independent compo-
nent analysis, (b) sparse variational autoencoders with nonlinear encoding, and
(c) sparse dictionaries. For panels a and c, the six latent factor with largest vari-
ance are shown. For panel b, we selected six latent factors whose corresponding
weights have weight sparsity pμ close to the median value.
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Figure 15: Distribution of Pearson correlations within the representation for
the models shown in Figures 11 and 14. (a) RBM (regularized, λ2

1 = 0.025).
(b) Sparse PCA. (c) Sparse noisy autoencoders. (d) Sparse VAE with linear en-
coder. (e) Sparse VAE with nonlinear encoder. For models b to e, the sparse
weight regularization is selected to yield the same median weight sparsity as
for the regularized RBM.

Figure 16: Example of latent factor data distributions, obtained by sampling
from P(h/z|v) for each sequence v in the data. (a) Scatter plot of h4 versus h5 for
the RBM shown in Figure 6. Note the strong but imperfect correlation and the
four distinct clusters. (b,c) Scatter plot of z1 versus z2, the two most important
features, for the sparse VAE with (b) linear or (c) nonlinear encoding. Note the
strong deviations from the i.i.d. gaussian distribution.
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Figure 17: Sequence generation with linear VAE. (a) Scatter plot of the number
of mutations to the closest natural sequence versus probability to fold into SA,
for natural and artificial LP sequences. Sequences are generated from unregu-
larized and regularized VAE by sampling random gaussian i.i.d. z. Then v are
obtained either by sampling from P(v|z) or as arg maxv P(v|z) (high probabil-
ity). Same colors and scale as Figure 6. RBM sequences (regular and high P(v)
are shown in gray. (b) Distribution of Hamming distance between generated
sequences, showing the diversity of the generated sequences.

Figure 18: Same as Figure 17 for VAE with encoding.

Figure 19: Comparison of feature importance distribution for real (blue) and
shuffled (orange) data, for (a) ICA, (b) sparse variational autoencoders (with
nonlinear encoding), (c) sparse dictionaries.
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Figure 20: Values of the average weight sparsity p and average number of con-
nections per hidden units pN for 38 RBM trained on real protein families.



1714 J. Tubiana, S. Cocco, and R. Monasson

Acknowledgments

We acknowledge Clément Roussel for helpful comments. This work was
partly funded by the ANR project RBMPro CE30-0021-01. JT acknowledges
funding from the Safra Center for Bioinformatics, Tel Aviv University.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1987). A learning algorithm for Boltz-
mann machines. In M. Fischler & O. Firschein (Eds.), Readings in computer vision
(pp. 522–533). Amsterdam: Elsevier.

Agliari, E., Annibale, A., Barra, A., Coolen, A., & Tantari, D. (2013). Immune net-
works: Multitasking capabilities near saturation. Journal of Physics A: Mathematical
and Theoretical, 46(41), 415003.

Agliari, E., Barra, A., Galluzzi, A., Guerra, F., & Moauro, F. (2012). Multitasking as-
sociative networks. Phys. Rev. Lett., 109, 268101.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters, 55(14),
1530.

Baden, T., Berens, P., Franke, K., Rosón, M. R., Bethge, M., & Euler, T. (2016). The
functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586), 345.

Barra, A., Bernacchia, A., Santucci, E., & Contucci, P. (2012). On the equivalence of
Hopfield networks and Boltzmann machines. Neural Networks, 34, 1–9.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., . . . Varo-
quaux, G. (2013). API design for machine learning software: Experiences from the Scikit-
learn project. arXiv:1309.0238.

Casari, G., Sander, C., & Valencia, A. (1995). A method to predict functional residues
in proteins. Nature Structural and Molecular Biology, 2(2), 171.

Cho, K., Raiko, T., & Ilin, A. (2010). Parallel tempering is efficient for learning re-
stricted Boltzmann machines. In Proceedings of the 2010 International Joint Confer-
ence on Neural Networks (pp. 1–8). Piscataway, NJ: IEEE.

Chollet, F. (2015). Keras. https://keras.io/
Cocco, S., Feinauer, C., Figliuzzi, M., Monasson, R., & Weigt, M. (2018). Inverse sta-

tistical physics of protein sequences: A key issues review. Reports on Progress in
Physics, 81(3), 032601.

Courville, A., Bergstra, J., & Bengio, Y. (2011). A spike and slab restricted Boltzmann
machine. In Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics (pp. 233–241). AISTATS.

Dahl, G., Ranzato, M., Mohamed, A.-r., & Hinton, G. E. (2010). Phone recognition
with the mean-covariance restricted Boltzmann machine. In J. D. Lafferty, C. K.
I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural
information processing systems, 23 (pp. 469–477). Red Hook, NY: Curran.

De Juan, D., Pazos, F., & Valencia, A. (2013). Emerging methods in protein co-
evolution. Nature Reviews Genetics, 14(4), 249.

https://keras.io/


Representation Learning with Restricted Boltzmann Machines 1715

Decelle, A., Fissore, G., & Furtlehner, C. (2017). Spectral dynamics of learning in
restricted Boltzmann machines. EPL (Europhysics Letters), 119(6), 60001.

Desjardins, G., Courville, A., & Bengio, Y. (2010). Adaptive parallel tempering for
stochastic maximum likelihood learning of RBMS. arXiv:1012.3476.

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Delalleau, O. (2010). Tem-
pered Markov chain Monte Carlo for training of restricted Boltzmann machines.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (pp. 145–152). AISTATS.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory,
52(4), 1289–1306.

Figliuzzi, M., Jacquier, H., Schug, A., Tenaillon, O., & Weigt, M. (2016). Coevolu-
tionary landscape inference and the context-dependence of mutations in beta-
lactamase tem-1. Molecular Biology and Evolution, 33(1), 268–280.

Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., . . .
Salazar, G. A. (2015). The PFAM protein families database: Towards a more sus-
tainable future. Nucleic Acids Research, 44(D1), D279–D285.

Fischer, A., & Igel, C. (2012). An introduction to restricted Boltzmann machines. In
Iberoamerican Congress on Pattern Recognition (pp. 14–36). Berlin: Springer.

Fowler, D. M., Araya, C. L., Fleishman, S. J., Kellogg, E. H., Stephany, J. J., Baker, D.,
& Fields, S. (2010). High-resolution mapping of protein sequence-function rela-
tionships. Nature Methods, 7(9), 741.

Gabrié, M., Tramel, E. W., & Krzakala, F. (2015). Training restricted Boltzmann
machine via the thouless-Anderson-Palmer free energy. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural in-
formation processing systems, 28 (pp. 640–648). Red Hook, NY: Curran.

Greener, J. G., Moffat, L., & Jones, D. T. (2018). Design of metalloproteins and
novel protein folds using variational autoencoders. Scientific Reports, 8(1),
16189.

Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein sectors: Evolu-
tionary units of three-dimensional structure. Cell, 138(4), 774–786.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8), 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P., Springer, M., Sander, C., &
Marks, D. (2017). Mutation effects predicted from sequence co-variation. Nature
Biotechnology, 35(2), 128–135.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and
applications. Neural Networks, 13(4–5), 411–430.

Jacquin, H., Gilson, A., Shakhnovich, E., Cocco, S., & Monasson, R. (2016).
Benchmarking inverse statistical approaches for protein structure and
design with exactly solvable models. PLoS Computational Biology, 12(5),
e1004889.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv:1312.6114.
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., & Teichmann, S. A.

(2015). The technology and biology of single-cell RNA sequencing. Molecular Cell,
58(4), 610–620.



1716 J. Tubiana, S. Cocco, and R. Monasson

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009). Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing (pp. 689–696). New York: ACM.

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T.-P., Kindermann, S. S., Bell, A. J.,
& Sejnowski, T. J. (1998). Analysis of FMRI data by blind separation into inde-
pendent spatial components. Human Brain Mapping, 6(3), 160–188.

McLaughlin Jr, R. N., Poelwijk, F. J., Raman, A., Gosal, W. S., & Ranganathan,
R. (2012). The spatial architecture of protein function and adaptation. Nature,
491(7422), 138.

Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unify-
ing variational autoencoders and generative adversarial networks. arXiv:1701.04722.

Miyazawa, S., & Jernigan, R. L. (1996). Residue–residue potentials with a favorable
contact pair term and an unfavorable high packing density term, for simulation
and threading. Journal of Molecular Biology, 256(3), 623–644.

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D. S., Sander, C., . . . Weigt,
M. (2011). Direct-coupling analysis of residue coevolution captures native con-
tacts across many protein families. Proceedings of the National Academy of Sciences,
108(49), E1293–E1301.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(pp. 807–814). Madison, WI: Omnipress.

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2),
125–139.

Nguyen, H. C., Zecchina, R., & Berg, J. (2017). Inverse statistical problems: From the
inverse Ising problem to data science. Advances in Physics, 66(3), 197–261.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583), 607.

Pennington, J., Schoenholz, S., & Ganguli, S. (2017). Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanatan, & R. Garnett (Eds.),
Advances in neural information processing systems, 30 (pp. 4785–4795).

Posani, L., Cocco, S., Ježek, K., & Monasson, R. (2017). Functional connectivity mod-
els for decoding of spatial representations from hippocampal CA1 recordings.
Journal of Computational Neuroscience, 43(1), 17–33.

Quadeer, A. A., Morales-Jimenez, D., & McKay, M. R. (2018). Co-evolution net-
works of HIV/HCV are modular with direct association to structure and function.
bioRxiv:307033.

Rausell, A., Juan, D., Pazos, F., & Valencia, A. (2010). Protein interactions and lig-
and binding: From protein subfamilies to functional specificity. Proceedings of the
National Academy of Sciences, 107(5), 1995–2000.

Riesselman, A. J., Ingraham, J. B., & Marks, D. S. (2017). Deep generative models of
genetic variation capture mutation effects. arxiv:1712.06527.

Rivoire, O., Reynolds, K. A., & Ranganathan, R. (2016). Evolution-based functional
decomposition of proteins. PLoS Computational Biology, 12(6), e1004817.

Salakhutdinov, R. (2010). Learning deep Boltzmann machines using adaptive
MCMC. In Proceedings of the 27th International Conference on Machine Learning (pp.
943–950). Madison, WI: Omnipress.



Representation Learning with Restricted Boltzmann Machines 1717

Salakhutdinov, R., & Murray, I. (2008). On the quantitative analysis of deep belief
networks. In Proceedings of the 25th International Conference on Machine Learning
(pp. 872–879). New York: ACM.

Schwarz, D. A., Lebedev, M. A., Hanson, T. L., Dimitrov, D. F., Lehew, G., Meloy, J.,
. . . Nicolelis, M. A. (2014). Chronic, wireless recordings of large-scale brain activ-
ity in freely moving rhesus monkeys. Nature Methods, 11(6), 670.

Shakhnovich, E., & Gutin, A. (1990). Enumeration of all compact conformations of
copolymers with random sequence of links. Journal of Chemical Physics, 93(8),
5967–5971.

Sinai, S., Kelsic, E., Church, G. M., & Novak, M. A. (2017). Variational autoencoding of
protein sequences. arxiv:1712.03346.

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th International Conference on Ma-
chine Learning (pp. 1064–1071). New York: ACM.

Tkacik, G., Prentice, J. S., Balasubramanian, V., & Schneidman, E. (2010). Optimal
population coding by noisy spiking neurons. Proceedings of the National Academy
of Sciences USA, 107(32), 14419–14424.

Tramel, E. W., Gabrié, M., Manoel, A., Caltagirone, F., & Krzakala, F. (2017). A deter-
ministic and generalized framework for unsupervised learning with restricted Boltzmann
machines. arXiv:1702.03260.

Tubiana, J., Cocco, S., & Monasson, R. (2018). Learning protein constitutive motifs from
sequence data. arXiv:1803.08718.

Tubiana, J., Cocco, S., & Monasson, R. (2019). Efficient sampling and parameterization
improve Boltzmann machines. Manuscript in preparation.

Tubiana, J., & Monasson, R. (2017). Emergence of compositional representations in
restricted Boltzmann machines. Physical Review Letters, 118(13), 138301.

Vu, H., Nguyen, T. D., Le, T., Luo, W., & Phung, D. (2018). Batch normalized deep
Boltzmann machines. In Proceedings of the Asian Conference on Machine Learning
(pp. 359–374).

Weigt, M., White, R. A., Szurmant, H., Hoch, J. A., & Hwa, T. (2009). Identification
of direct residue contacts in protein–protein interaction by message passing. Pro-
ceedings of the National Academy of Sciences, 106(1), 67–72.

Wolf, S., Supatto, W., Debrégeas, G., Mahou, P., Kruglik, S. G., Sintes, J.-M., . . . Can-
delier, R. (2015). Whole-brain functional imaging with two-photon light-sheet mi-
croscopy. Nature Methods, 12(5), 379.

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis.
Journal of Computational and Graphical Statistics, 15(2), 265–286.

Received February 18, 2019; accepted April 6, 2019.


